PALM

Photoactivated Localization Microscopy (PALM)

Photoactivated Localization Microscopy, or PALM imaging (1) exploits the unique behavior of special fluorophores (PALM-FPs), whose spectral properties change upon exposure to specific wavelengths of light.

PALM PRINCIPLE

In the right conditions, upon illumination with the activation, light only a random and sparse number of PALM-FPs are activated and emit light for a short period time. The light emission from individual fluorophores can be recorded and used to localize and track single molecules with sub-diffraction precision, as in other SMLM super-resolution techniques. By concatenation of activation/detection/deactivation steps all the fluorophores in the sample can be accurately counted, localized, and tracked over time.

What are the advantages of PALM?

More than for other SMLM techniques, in PALM the characteristics of the fluorophores are of paramount importance. On the basis of the spectral change induced upon activation we can distinguish:

  • Photoactivatable (PA) fluorophores, activated from low fluorescent states (OFF) to high fluorescence states (ON).
  • Photoconvertible (PC) fluorophores, that upon activation change from one fluorescent color to another.

The spectral change can be irreversible, or it can be switched on and off reversibly (switchable fluorophores).

The most used PALM-FPs are fluorescent proteins: these can be appended to other proteins via genetic engineering and thus allow super resolution imaging of virtually any protein-of-interest within the cell, independently of the availability of antibodies or other affinity reagents.

However, also certain organic fluorophores can be activated only by illumination at specific wavelengths, without photoswitching buffers and at physiological oxygen levels (as opposed to dSTORM); these have been used in combination with genetically encoded tags in hybrid systems that have expanded the traditional fluorescent toolbox available for PALM imaging (SNAP, CLIP, Halo-tags).

Photoactivatable (PA) fluorophores Irreversible

Fluorophore OFF Activation light ON

Excitation/Emission

PA-GFP 2 dark UV-Violet     Blue –

  (504 nm –

– Green

517 nm)

PA-TagRFP 3 dark UV-Violet     Orange-

  (563nm –

– Red

– 594nm)

PA-mCherry 4 dark UV-Violet     Orange-

  (570nm –

– Red

– 596nm)

PA-mKate2 5 dark UV-Violet     Red-

  (586nm –

– Far Red

– 628nm)

Photoactivatable (PA) fluorophores Reversible

Fluorophore OFF Activation/deactivation light ON

Excitation/Emission

Dronpa 6 dark UV- -Blue     Blue-

(503 nm-

Green

-518nm)

Padron 7 dark Blue- -UV  Blue-

  (503 nm-

-Green

-518nm)

Dreiklang 7 dark UV- –Violet  Blue-

  (515nm-

-Green

-529nm)

rsCherry 8 dark Green- -Blue Green-

 (570 nm-

-Red

 -596 nm)

rsCherry-rev 8 dark Blue- -Green Green-

 (570 nm-

-Red

 -596 nm)

FP595 9 dark Green- -Red Orange-

(590 nm-

-Red

-600 nm)

PA-JF549 10,* dark UV- -Violet Green-

(549 nm-

-Red

-573 nm)

PA-JF646 10, * dark UV- Violet        Red-

(646 nm-

-Far Red

-665 nm)

* organic fluorophores

Photoconvertible (PC) fluorophores Irreversible

Fluorophore Pre-conversion

Excitation/Emission

Photoconversion light Post-conversion

Excitation/Emission

PS-CFP2 11    UV-

(400 nm-

-Cyan

-468nm)

UV- -Violet     Blue-

  (490 nm-

Green

-511 nm)

Kaede 12    Blue-

(508 nm-

-Green

-518nm)

UV- -Violet     Orange-

  (572 nm-

Red

-582 nm)

mMaple3 13    Blue-

(489 nm-

-Green

-505nm)

UV- -Violet     Orange-

  (566 nm-

Red

-583 nm)

Dendra2 14,15    Blue-

(490 nm-

-Green

-507nm)

UV- -Violet Green-

(553 nm-

Red

 –573 nm)

Blue

KikGr, mKikGr 16,17    Blue-

(507 nm-

-Green

517nm)

UV- -Violet     Orange-

  (566 nm-

Red

-583 nm)

mEOS, mEOS2 18, *    Blue-

(506 nm-

-Green

519nm)

UV- -Violet     Orange-

  (573 nm-

Red

-584 nm)

mEOS3.1, mEOS3.2 19, *    Blue-

(507 nm-

-Green

516nm)

UV- -Violet     Orange-

  (572 nm-

Red

-580 nm)

mEOS 4b 20, *    Blue-

(505 nm-

-Green

516nm)

UV- -Violet     Orange-

  (572 nm-

Red

-580 nm)

*Reversible with intermediate dark state

Photoconvertible (PC) fluorophores Reversible

Fluorophore Pre-conversion

Excitation/Emission

Photoconversion light Post-conversion

Excitation/Emission

mIrisGFP 21    UV-

(400 nm-

-Cyan

-468nm)

UV-Violet Blue-

(490 nm-

-Green

 –511 nm)

NijiGFP 22 Blue-

(508 nm-

-Green

 -518 nm)

UV-Violet Orange-

(572 nm-

-Red

582 nm)

What are the advantages of PALM?

Versatility and specificity

Through gene tagging PALM-FP can be appended to practically any protein in a cell or organism, with very high labelling specifity. Thus, PALM is the most effective super-resolution   technique to image “difficult” targets:

  • when antibodies or other affinity tags are not available or are unable to discriminate close isoforms;
  • when the target is difficult to label, because in a crowded intracellular compartment,  or surrounded by a difficult-to-penetrate envelope.

Compatible with live imaging

PALM-FPs require relatively mild conditions to photoswitch, differently from most STORM fluorophores;  thus, PALM is the technique of choice to perform live super-resolution imaging. In particular, when combined with tracking algorithms, PALM allows to do single particle tracking (SPT-PALM) in living cells and organisms, with  nanometric spatial resolution and millisecond temporal resolution.

Quantitative imaging

PALM high labelling specificity and low overcounting ((most irreversible PALM-FPs are activated only once) make it a highly useful tool for quantitative experiments (23) and precise single molecule counting. Homogeneous illumination and precise control of activation and excitation light, such as permitted  by Abbelight ASTER technology is essential for quantitative PALM.

What are the drawbacks of PALM and how to overcome them?

Compared to other SMLM techniques (PAINT, dSTORM), PALM has generally shown lower resolutive power, because fluorescent proteins are in general less bright than organic fluorophores: less light translates into lower precision of localization and thus resolution. Recently developed brighter variants of fluorescent proteins, and even more photoswitchable organic fluorophores have greatly improved the resolutive power of PALM.

PALM multicolor workflows are often difficult, because of large and overlapping excitation/emission spectra of fluorescent proteins, and their simultaneous co-activation with UV light. Also in this case, photoswitchable organic fluorophores increase the multiplexing flexibility of PALM experiments. Moreover, the combination with appraches such as Abbelight spectral demixing can greatly simplify simultaneous multicolor PALM.

Structural PALM imaging of RNA polymerase (rpoC-Dendra2) in fixed Escherichia coli cells

Courtesy of Bartosz Turkowyd & Ulrike Endesfelder, SYNMIKRO MPI Marburg / CMU-Pittsburgh

Single-particle tracking (spt)PALM imaging of RNA polymerase (rpoC-Dendra2) in living Escherichia coli cells

Courtesy of Bartosz Turkowyd & Ulrike Endesfelder, SYNMIKRO MPI-Marburg / CMU-Pittsburgh

If you want to know more about cutting-edge PALM techniques, including primed conversion,  check out the Webinar of Pr. Ulrike Endesfelder:

Visualizing cellular life: from single cell imaging to in vivo single-molecule biochemistry

WATCH THE WEBINAR HERE!

1.Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006 Sep 15;313(5793):1642-5. doi: 10.1126/science.1127344. Epub 2006 Aug 10. PMID: 16902090.Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297(5588):1873-1877. doi:10.1126/science.1074952

2.Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002 Sep 13;297(5588):1873-7. doi: 10.1126/science.1074952. PMID: 12228718.

3.Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc. 2010;132(18):6481-6491. doi:10.1021/ja100906g

4.Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy [published correction appears in Nat Methods. 2009 Apr;6(4):311]. Nat Methods. 2009;6(2):153-159. doi:10.1038/nmeth.1298

5.Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J. 2011 Sep 21;101(6):1522-8. doi: 10.1016/j.bpj.2011.07.049. Epub 2011 Sep 20. PMID: 21943434; PMCID: PMC3177078.

6.Habuchi S, Ando R, Dedecker P, et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A. 2005;102(27):9511-9516. doi:10.1073/pnas.0500489102

7.Andresen M, Stiel AC, Fölling J, et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol. 2008;26(9):1035-1040. doi:10.1038/nbt.1493

8.Stiel AC, Andresen M, Bock H, et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J. 2008;95(6):2989-2997. doi:10.1529/biophysj.108.130146

9.Schäfer, L., Groenhof, G., Klingen, A., Ullmann, G., Boggio‐Pasqua, M., Robb, M. and Grubmüller, H. Photoswitching of the Fluorescent Protein asFP595: Mechanism, Proton Pathways, and Absorption Spectra. Angewandte Chemie International Edition, 2007; 46: 530-536. https://doi.org/10.1002/anie.200602315

10.Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T, Lavis LD. Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods. 2016 Dec;13(12):985-988. doi: 10.1038/nmeth.4034. Epub 2016 Oct 24. PMID: 27776112.

11.Owen DM, Magenau A, Williamson DJ, Gaus K. Super-resolution imaging by localization microscopy. Methods Mol Biol. 2013;950:81-93. doi: 10.1007/978-1-62703-137-0_6. PMID: 23086871.

12.Schäfer SP, Dittrich PS, Petrov EP, Schwille P. Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede. Microsc Res Tech. 2006 Mar;69(3):210-9. doi: 10.1002/jemt.20283. PMID: 16538628.

13.McEvoy AL, Hoi H, Bates M, Platonova E, Cranfill PJ, Baird MA, Davidson MW, Ewers H, Liphardt J, Campbell RE. mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One. 2012;7(12):e51314. doi: 10.1371/journal.pone.0051314. Epub 2012 Dec 11. PMID: 23240015; PMCID: PMC3519878.

14.Lee SH, Shin JY, Lee A, Bustamante C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17436-41. doi: 10.1073/pnas.1215175109. Epub 2012 Oct 8. PMID: 23045631; PMCID: PMC3491528.

15.Virant D, Turkowyd B, Balinovic A, Endesfelder U. Combining Primed Photoconversion and UV-Photoactivation for Aberration-Free, Live-Cell Compliant Multi-Color Single-Molecule Localization Microscopy Imaging. Int J Mol Sci. 2017 Jul 14;18(7):1524. doi: 10.3390/ijms18071524. PMID: 28708098; PMCID: PMC5536014.

16.Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 2005 Mar;6(3):233-8. doi: 10.1038/sj.embor.7400361. PMID: 15731765; PMCID: PMC1299271.

17.Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One. 2008;3(12):e3944. doi: 10.1371/journal.pone.0003944. Epub 2008 Dec 15. PMID: 19079591; PMCID: PMC2592542.

18.McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL. A bright and photostable photoconvertible fluorescent protein. Nat Methods. 2009 Feb;6(2):131-3. doi: 10.1038/nmeth.1296. Epub 2009 Jan 25. PMID: 19169260; PMCID: PMC2745648.

19. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods. 2012 May 13;9(7):727-9. doi: 10.1038/nmeth.2021. PMID: 22581370.

20.Kopek BG, Paez-Segala MG, Shtengel G, Sochacki KA, Sun MG, Wang Y, Xu CS, van Engelenburg SB, Taraska JW, Looger LL, Hess HF. Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc. 2017 May;12(5):916-946. doi: 10.1038/nprot.2017.017. Epub 2017 Apr 6. PMID: 28384138; PMCID: PMC5514615.

21.Gayda S, Nienhaus K, Nienhaus GU. Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J. 2012 Dec 19;103(12):2521-31. doi: 10.1016/j.bpj.2012.11.011. Epub 2012 Dec 18. PMID: 23260054; PMCID: PMC3525849.

22.Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J. Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol. 2011 Oct 28;18(10):1241-51. doi: 10.1016/j.chembiol.2011.08.007. PMID: 22035793.

23.Shivanandan A, Deschout H, Scarselli M, Radenovic A. Challenges in quantitative single molecule localization microscopy. FEBS Lett. 2014 Oct 1;588(19):3595-602. doi: 10.1016/j.febslet.2014.06.014. Epub 2014 Jun 10. PMID: 24928440.